Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] !!!!!! BME Elmeleti Fizika Tanszek szeminariuma !!!!!!!!!!

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] !!!!!! BME Elmeleti Fizika Tanszek szeminariuma !!!!!!!!!!


Chronological Thread 
  • From: Varga Imre <varga AT neumann.phy.bme.hu>
  • To: dtp AT newton.phy.bme.hu
  • Subject: [Fizinfo] !!!!!! BME Elmeleti Fizika Tanszek szeminariuma !!!!!!!!!!
  • Date: Tue, 16 Jan 2007 12:32:34 +0100
  • List-archive: <http://sunserv.kfki.hu/pipermail/fizinfo>
  • List-id: "ELFT H&#205;RAD&#211;" <fizinfo.lists.kfki.hu>
  • Resent-date: Tue, 16 Jan 2007 12:33:18 +0100
  • Resent-from: Varga Imre <varga AT neumann.phy.bme.hu>
  • Resent-message-id: <200701161233.18428.varga AT neumann.phy.bme.hu>
  • Resent-to: fizinfo AT lists.kfki.hu, matematikusok AT math.bme.hu

!!!!!!!!!!!! Rendkivuli idopont, rendkivuli helyszin !!!!!!!!!!!!
!!!! Ha valaki mar megkapta egyszer, attol elnezest kerek !!!!


MEGHIVO
a BME Fizikai Intezet, Elmeleti Fizika Tanszek
szeminariumara:


Nathan Andrei
Department of Physics and Astronomy
Rutgers University, Piscataway, New Jersey, USA

"Quantum impurities out of equilibrium"

Abstract: We develop an exact nonperturbative framework to compute
steady-state properties of strongly correlated quantum impurities
subject to
a finite bias. We show that the steady-state physics of these systems
is
captured by nonequilibrium scattering eigenstates which satisfy an
appropriate Lippman-Schwinger equation. Introducing a generalization
of the
equilibrium Bethe Ansatz -the Scattering Bethe Ansatz - we explicitly
construct the scattering eigenstates for the Interacting Resonance
Level and
Kondo Model and derive exact, nonperturbative results for their
steady-state
properties.


Helye: BME Fizikai Intezet,
Elmeleti Fizika Tanszek,
Budafoki ut 8.
F-epulet, III. lepcsohaz, 2. emelet 13. (a Fizika Tanszeken)

Ideje: 2007. januar 18. csutortok, 10:00.


Minden erdeklodot szivesen latunk.



Varga Imre





Archive powered by MHonArc 2.6.19+.

Top of Page