fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
- From: Janos Asboth <asboth.janos AT ttk.bme.hu>
- To: elmfiz.oktatok-kutatok AT lists.bme.hu, elmfiz.hallgatok AT lists.bme.hu, fizinfo AT lists.kfki.hu, Máté Tibor Veszeli <mate.veszeli AT gmail.com>
- Subject: [Fizinfo] BME Elm. Fiz. Szeminárium, szept 10, Veszeli Máté
- Date: Wed, 8 Sep 2021 11:38:45 +0200
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=ttk.bme.hu; dmarc=pass action=none header.from=ttk.bme.hu; dkim=pass header.d=ttk.bme.hu; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector9901; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version; bh=TY4h+VhrfiFqY0YaG+0t2pS3y21CLEo20fpkV50NiHM=; b=a9w2Buno4XqnqvEebYvrZ8+GNLZfhkzHmNFTN6bvXbQ41ga573Xu7AUusBMenkVlqCCZXUwL2eKwDXMLsAmSKyV6tN4BVtlVTBNan976P9LIYPZbXExSQCg9MTol9FyxozK0+9nN/OINcqkjb7n1wE9oTLM9LPZ8OLvRifeMAkngL0KCk8/W7RjCock/a6kkwRvH7xRbFoOFRMzsQ0rL4cuUIB7b9GWY9kTWGzuYo3C3zPu60SIQOT7qmuaS2rzzgfP4aDDUrh6Nc1vJiA5YLnzOyetj4ST46H2ZAkKcI4HYT3PgvVWNIkpAHmDsPktsJ3xP5RPMn+KOCTwt/nidGQ==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector9901; d=microsoft.com; cv=none; b=g7Kd/htyQ6ZKEwDaWlzMfypPz5nlEMp9+yd1sPRBqhMzZV+HZhrsZ72oXSfZMb6CIBiHMiCZ0rzXldFPPuhiFFysEXjxhBMGRMAEL2P40WJAGpy8tkxdvTG/10Qv0jlEyGrMz+Swl1a1EYVpVsssu+wd50jyd0tBAsc4tk3YQx6P6UETejtX+7RnlG1r+9eSrQn/HN+nqtoKGK7esMOvMFQTVymVwkAU0foZ0V7Ou4VO/qRSZYdn9Pii+adpn2UxwRzVeLplUaF7uQ2waiNLozQ0tJAU5fZ1tWnLRp8X/7waBODSVhVr95HIkdQ8pyRAcfAxEAQcY3sjOyBlvx1dPQ==
- Authentication-results: smtp0.kfki.hu (amavisd-new); dkim=pass (2048-bit key) header.d=ttk.bme.hu
- Authentication-results: lists.kfki.hu; dkim=none (message not signed) header.d=none;lists.kfki.hu; dmarc=none action=none header.from=ttk.bme.hu;
Meghívó
BME Elméleti Fizika Szeminárium,
szept. 10. péntek 10h15,
1111 Budapest, Budafoki út 8., BME F III. magasföldszint 01.,
Elméleti Fizika Tanszék szemináriumi szoba
Veszeli Máté (ELTE Komplex Rendszerek Fizikája Tanszék):
Mean Field Approximation for solving QUBO problems
Optimization is one of the most useful mathematical tools in everyday life.
The Quadratic Unconstrained Binary Optimization (QUBO) problem is a
ubiquitous, NP hard problem, with no efficient solution, but many good
approximations (simulated annealing, coherent Ising machine, etc). An
adiabatic quantum computer would be perfect for this task, but its physical
implementation is cumbersome, as the system can't be separated from its
environment, and a large number of qubits would be needed.
I will present a mean-field-based algorithm we developed[1], imitating
quantum annealing, to solve the QUBO problem, and compare it with mean
field approximation as familiar from statistical physics.
[1]: MT Veszeli, G Vattay: https://arxiv.org/abs/2106.03238
Minden érdeklődőt szeretettel várunk.
Asbóth János
szemináriumi koordinátor
- [Fizinfo] BME Elm. Fiz. Szeminárium, szept 10, Veszeli Máté, Janos Asboth, 09/08/2021
Archive powered by MHonArc 2.6.19+.