Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma


Chronological Thread 
  • From: Balog Janos <balog.janos AT wigner.mta.hu>
  • To: fizinfo AT lists.kfki.hu, rmkiusers AT lists.kfki.hu
  • Subject: [Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma
  • Date: Tue, 27 Feb 2018 12:12:27 +0100
  • Authentication-results: smtp2.kfki.hu (amavisd-new); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.mta.hu

MTA Wigner FK RMI Elméleti Osztály Szemináriuma
Tisztelettel meghívjuk


Hans Feichtinger
(University of Vienna)


"A function space defined by the Wigner transform and its Applications"


címmel tartandó szemináriumára.

Kivonat:

The so-called Feichtinger algebra S0, resp.\ the modulation space M1 on Rd can be defined by the integrability of the Wigner transform. Despite the quadratic character of the transform this defines a linear space and even a FOURIER invariant Banach space containing the Schwartz space of rapidly decreasing functions.
Based on such a Banach space of test functions one can develop a quite general but still comparatively convenient theory of Fourier transforms, covering the continuous and discrete, the periodic and the non-periodic case.
Using the Banach Gelfand triple, consisting of S0, contained in the Hilbert space L2 and this in turn embedded into the space SO′ of linear functionals one has a good way to describe questions from applied fields, such as slowly varying systems, audio signals (using spectrograms) and much more. Moreover it a key element in a variant of time-frequency analysis called Gabor Analysis, going back to the work of Dennes Gabor (published in 1946).
This Banach Gelfand Triple is a suitable tool for theoretical physics (rigged Hilbert space) and time-frequency analysis.
The spaces can also be characterized via so-called Wilson bases, which also played a significant role in the signal processing part of the discovery of gravitational waves by the LIGO team (Phyiscs Nobel-Prize 2017).




Helye: MTA Wigner FK RMI III.ép. Tanácsterem
Ideje: 2018 március 2 péntek du. 14:00 óra



Szívesen látunk minden érdeklődőt.

Balog János



Archive powered by MHonArc 2.6.19+.

Top of Page