Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] KRFT tea: Fortagh a hideg atomokrol

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] KRFT tea: Fortagh a hideg atomokrol


Chronological Thread 
  • From: geszti AT complex.elte.hu
  • To: Fizinfo <Fizinfo AT lists.kfki.hu>
  • Subject: [Fizinfo] KRFT tea: Fortagh a hideg atomokrol
  • Date: Thu, 28 Mar 2013 10:21:21 +0100
  • List-archive: <http://mailman.kfki.hu/pipermail/fizinfo>
  • List-id: ELFT HÍRADÓ <fizinfo.lists.kfki.hu>



MEGHÍVÓ

az ELTE Komplex Rendszerek Fizikája Tanszék teájára

Fortágh József

CQ Center for Collective Quantum Phenomena and their Applications
University of Tübingen
Auf der Morgenstelle 14, D-72076 Tübingen, Germany
www.pit.physik.uni-tuebingen.de/fortagh


Interfacing cold atoms and solids

Trapping and manipulating atoms by means of microscopic traps has seen enormous advances within the last decade. Today, ultra-cold atom clouds, Bose-Einstein condensates, and Fermi gases are routinely trapped in conservative potential at the surface of microchips [1]. Such experiments have delivered important insights into fundamental interactions between atoms and surfaces and pave the way towards the coherent coupling between atoms and quantum electronic circuits.

In our experiments, we investigate the quantum interface between atomic clouds and superconducting devices. In general, the state of a superconducting quantum bit can be manipulated at microelectronic rates. However, its decoherence is fast due to the coupling to the thermal environment. Transferring the quantum state to cold atoms as quantum memory may bridge sort and long time scales. We develop experimental techniques towards the realization of such solid state-atomic-light quantum interfaces. I report the realization of a trapped rubidium atomic clock on a superconducting chip. We use the atomic clock to demonstrate the long coherence time of atomic superposition states near the superconductor, which is necessary for constructing a long living quantum memory [2].

Another subject of our research is the development of integrated quantum sensors based on ultra-cold atoms. I describe the application of ultra-cold atom clouds as the “tip” of a scanning probe microscope [3]. This tip (typically 103–105 atoms, density 1012–1014 cm-3, temperature 10nK–1ľK) is scanned in a three-dimensional volume above the surface of interest by means of a magnetic “conveyor belt”. Analog to AFMs, the cold-atom scanning probe microscope (CA-SPM) can be operated in contact and dynamical modes for imaging surface topographies and for ultrasensitive force measurements [4].


References
1. J. Fortágh, C. Zimmermann, “Magnetic microtraps for ultracold atoms”,
Reviews of Modern Physics 79, 235 (2007).
2. S. Bernon et al., arXiv:1302.6610 (2013).
3. M. Gierling et al., “Cold-atom scanning probe microscopy”,
Nature Nanotechnology 6, 446-451 (2011).
4. P. Schneeweiß et al., “Dispersion forces between ultracold atoms and a carbon nanotube”,
Nature Nanotechnology 7, 515-519 (2012)

Az előadás kezdete: április 2-án, kedden kettőkor

helye: ELTE TTK északi épület, 5.128-as terem.

Vendégeket, mint mindig, most is szívesen látunk.





  • [Fizinfo] KRFT tea: Fortagh a hideg atomokrol, geszti, 03/28/2013

Archive powered by MHonArc 2.6.19+.

Top of Page