fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
- From: Insperger Tamás <inspi AT mm.bme.hu>
- To: undisclosed-recipients: ;
- Subject: [Fizinfo] Mechanika szeminárium - 2007. ápr. 5. csüt. 12:30
- Date: Thu, 29 Mar 2007 14:49:01 +0200
- List-archive: <http://sunserv.kfki.hu/pipermail/fizinfo>
- List-id: "ELFT HÍRADÓ" <fizinfo.lists.kfki.hu>
MEGHÍVÓ
a BME Tartószerkezetek Mechanikája Tanszék és
a BME Műszaki Mechanikai Tanszék
által közösen szervezett Mechanika szeminárium következő előadására
* * * * * * * * * * * * * * * * *
Carsten Proppe
(Institut für Technische Mechanik, Universität Karlsruhe)
Reliability estimation with stochastic finite element methods
2007. ápr. 5. csütörtök 12.30 óra
* * * * * * * * * * * * * * * * *
Az előadás helye:
BME Műszaki Mechanikai Tanszék
MM/MG épület, könyvtár
Az előadás tartalma:
Stochastic finite element techniques have been applied so far to the estimation of first and second moment properties of response quantities. A common approach is the spectral method, where polynomial chaos expansions of response quantities are combined with a truncated Karhunen-Loeve-representation of the input random field. These expansions represent global approximations in the Hilbert space of functions of (usually standard Gaussian) random variables. However, the global approximation character may lead to inefficient convergence behavior for higher order response moments or small response probabilities.
For this reason, reliability estimation can not be based on global polynomial chaos expansions. Instead, after the multiplicative decomposition in a deterministic and a random part, local approximation schemes are introduced by partitioning the domain of random variables and the physical domain. By carefully choosing the local basis, the problem decouples in the random domain. The expansion coefficients can then be determined independently by parallel processing. Moreover, local expansions allow to construct new hybrid simulation schemes, that is, combinations of analytical and simulation based techniques.
For reliability estimation, the expansion can be interpreted as a local response surface. However, care must be taken to avoid the curse of dimensionality related to the splitting of the whole computational domain into small parts. Here, starting from the global approximation, a local response surface is constructed by computing the design point and sensitivities. After that, suitable local approximations can be introduced by decomposing the region of most probable failure.
A szeminárium honlapja:
http://www.me.bme.hu/esemeny/szilszem/index.html
Minden érdeklődőt szívesen látunk.
- [Fizinfo] Mechanika szeminárium - 2007. ápr. 5. csüt. 12:30, Insperger Tamás, 03/29/2007
Archive powered by MHonArc 2.6.19+.