Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] Mechanika szeminárium

fizinfo AT


List archive

[Fizinfo] Mechanika szeminárium

Chronological Thread 
  • From: Tamas Insperger <inspi AT>
  • To: Gyorgy Karolyi <karolyi AT>, kbagi AT, ibojtar AT, gaspar AT, bedap AT, lkollar AT, horto AT, kurutzm AT, vpet AT, varadik AT, Nemeth.Robert AT, boden AT, hincz AT, kovacsf AT, domokos AT, lamer AT, erdelyi.sil AT, sapkas AT, neder AT, zczap AT, Sajtos.SIL AT SILVER.SZT.BME.HU, adorjan AT, kiss AT, tegzes AT, peczely AT, imreemok AT, filosoft AT, hegedus AT, kuti AT, dezso AT, richlik AT, fazakas AT, lohasz AT, czigany AT, kargez AT, sztanyi AT, prohaska AT, krallics AT, knopp AT, pandula AT, zsiba AT, veroni AT, kotaib AT, szalai AT, molnig AT, garay AT, gtibor AT, lapsanka AT, moson AT, oktatok AT, stipen AT, kapsza.e AT, regert AT, balczo AT, hoscsaba AT, mkaszanitzky AT, paal AT, vasarhelyi AT, zmosonyi.gumitech AT, verhas AT, unger AT, potztag AT, bvajda AT, fizinfo AT, rradnai AT, a.anci AT, csepelladora AT, naszta AT, black AT, smokey AT, tarat AT, brigi0505 AT, judka AT, tdennis AT, gombosakos AT
  • Cc:
  • Subject: [Fizinfo] Mechanika szeminárium
  • Date: Thu, 04 Mar 2004 14:53:53 +0100
  • List-archive: <>
  • List-id: ELFT HÍRADÓ <>

a BME Tartószerkezetek Mechanikája Tanszék és

a BME Műszaki Mechanikai Tanszék

által közösen szervezett Mechanika szeminárium következő előadására
* * * * * * * * * * * * * * * * *
Prof. Walter Wedig
Institut für Technische Mechanik
Universität Karlsruhe

Nonlinear Car Dynamics under Stochastic Road Excitations

2004. március 11. csütörtök, 12.30 óra

* * * * * * * * * * * * * * * * *
Az előadás helye:

BME Műszaki Mechanikai Tanszék

MM épület, könyvtár


To quantify comfort and safety of nonlinear vehicles riding
on rough road surfaces, the paper proposes to introduce dimensionless
time and normalized coordinates derived by the stationary analysis of
linear road-vehicle systems. This leads to equations of motion in
dimensionless forms independent on the intensities of the base
excitations. In a second step, initial perturbations are introduced into
the road-vehicle systems in order to derive variational equations which
determine the asymptotic stability of the perturbed equations of motion.

The variational equations are transformed by means of polar
coordinates in order to determine the top Lyapunov exponent and
associated rotation number. According to Oseledec s [1] multiplicative
ergodic theorem, both characteristic numbers are independent on the
initially introduced perturbations. They are only dependent on
frequency parameters and damping measures of the road-vehicle system of
For increasing nonlinearity parameters or varying linear frequencies or
damping measures, the top Lyapunov exponent can become positive, i.e.
the stationary system behaviour becomes unstable bifurcating into
nonstationary attractors.
In a third part, numerical solutions of associated
Fokker-Planck equations are investigated applying central differeneces
schemes. To avoid negative density values in the density tales, the
derived linear equations are solved by means of large-scale quadratic
optimization programming. The method is demonstrated by one- and
two-dimensional problems with known closed-form density distributions
and then extended to more general non-symmetrical problems of nonlinear
dynamical systems.

A szeminárium honlapja:

Minden érdeklődőt szívesen látunk.

Archive powered by MHonArc 2.6.19+.

Top of Page