Skip to Content.

fizinfo - [Fizinfo] Mechanika szeminárium

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

Text archives


[Fizinfo] Mechanika szeminárium


Chronological Thread 
  • From: Tamas Insperger <inspi AT mm.bme.hu>
  • To: Gyorgy Karolyi <karolyi AT tas.me.bme.hu>, kbagi AT mail.bme.hu, ibojtar AT mail.bme.hu, gaspar AT ep-mech.me.bme.hu, bedap AT kme.bme.hu, lkollar AT goliat.eik.bme.hu, horto AT ep-mech.me.bme.hu, kurutzm AT eik.bme.hu, vpet AT phyndi.fke.bme.hu, varadik AT eik.bme.hu, Nemeth.Robert AT gmx.net, boden AT ludens.elte.hu, hincz AT hotmail.com, kovacsf AT ep-mech.me.bme.hu, domokos AT iit.bme.hu, lamer AT emma.hu, erdelyi.sil AT silver.szt.bme.hu, sapkas AT vbt.bme.hu, neder AT eik.bme.hu, zczap AT epito.bme.hu, Sajtos.SIL AT SILVER.SZT.BME.HU, adorjan AT vasbeton.vbt.bme.hu, kiss AT vasbeton.vbt.bme.hu, tegzes AT angel.elte.hu, peczely AT vasbeton.vbt.bme.hu, imreemok AT epito.bme.hu, filosoft AT matavnet.hu, hegedus AT vbt.bme.hu, kuti AT kme.bme.hu, dezso AT kme.bme.hu, richlik AT kme.bme.hu, fazakas AT kme.bme.hu, lohasz AT simba.ara.bme.hu, czigany AT eik.bme.hu, kargez AT eik.bme.hu, sztanyi AT kalorgep.bme.hu, prohaska AT eik.bme.hu, krallics AT eik.bme.hu, knopp AT rit.bme.hu, pandula AT vizgep.bme.hu, zsiba AT freemail.hu, veroni AT freemail.hu, kotaib AT mail.datanet.hu, szalai AT ktk.bme.hu, molnig AT freemail.hu, garay AT math.bme.hu, gtibor AT freemail.c3.hu, lapsanka AT yahoo.com, moson AT bme-tk.bme.hu, oktatok AT mm.bme.hu, stipen AT mm.bme.hu, kapsza.e AT freemail.hu, regert AT simba.ara.bme.hu, balczo AT simba.ara.bme.hu, hoscsaba AT vizgep.bme.hu, mkaszanitzky AT graphisoft.hu, paal AT vizgep.bme.hu, vasarhelyi AT epito.bme.hu, zmosonyi.gumitech AT woco.de, verhas AT phy.bme.hu, unger AT born.phy.bme.hu, potztag AT vbt.bme.hu, bvajda AT rle.hu, fizinfo AT lists.kfki.hu, rradnai AT mta.mmsz.hu, a.anci AT freemail.hu, csepelladora AT freemail.hu, naszta AT biomech.bme.hu, black AT dpg.hu, smokey AT freemail.hu, tarat AT mail.datanet.hu, brigi0505 AT index.hu, judka AT mailbox.hu, tdennis AT vnet.hu, gombosakos AT freemail.hu
  • Cc:
  • Subject: [Fizinfo] Mechanika szeminárium
  • Date: Thu, 04 Mar 2004 14:53:53 +0100
  • List-archive: <http://sunserv.kfki.hu/pipermail/fizinfo>
  • List-id: ELFT HÍRADÓ <fizinfo.lists.kfki.hu>


MEGHÍVÓ
a BME Tartószerkezetek Mechanikája Tanszék és

a BME Műszaki Mechanikai Tanszék

által közösen szervezett Mechanika szeminárium következő előadására
* * * * * * * * * * * * * * * * *
Prof. Walter Wedig
Institut für Technische Mechanik
Universität Karlsruhe

Nonlinear Car Dynamics under Stochastic Road Excitations

2004. március 11. csütörtök, 12.30 óra

* * * * * * * * * * * * * * * * *
Az előadás helye:

BME Műszaki Mechanikai Tanszék

MM épület, könyvtár



Abstract:


To quantify comfort and safety of nonlinear vehicles riding
on rough road surfaces, the paper proposes to introduce dimensionless
time and normalized coordinates derived by the stationary analysis of
linear road-vehicle systems. This leads to equations of motion in
dimensionless forms independent on the intensities of the base
excitations. In a second step, initial perturbations are introduced into
the road-vehicle systems in order to derive variational equations which
determine the asymptotic stability of the perturbed equations of motion.

The variational equations are transformed by means of polar
coordinates in order to determine the top Lyapunov exponent and
associated rotation number. According to Oseledec s [1] multiplicative
ergodic theorem, both characteristic numbers are independent on the
initially introduced perturbations. They are only dependent on
frequency parameters and damping measures of the road-vehicle system of
interest.
For increasing nonlinearity parameters or varying linear frequencies or
damping measures, the top Lyapunov exponent can become positive, i.e.
the stationary system behaviour becomes unstable bifurcating into
nonstationary attractors.
In a third part, numerical solutions of associated
Fokker-Planck equations are investigated applying central differeneces
schemes. To avoid negative density values in the density tales, the
derived linear equations are solved by means of large-scale quadratic
optimization programming. The method is demonstrated by one- and
two-dimensional problems with known closed-form density distributions
and then extended to more general non-symmetrical problems of nonlinear
dynamical systems.




A szeminárium honlapja:

http://www.me.bme.hu/esemeny/szilszem/index.html

Minden érdeklődőt szívesen látunk.






Archive powered by MHonArc 2.6.19+.

Top of Page