Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] [Rmkiusers] Wigner FK RMI Elméleti Osztály Szemináriuma

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] [Rmkiusers] Wigner FK RMI Elméleti Osztály Szemináriuma


Chronological Thread 
  • From: Somogyi Gábor <somogyi.gabor AT wigner.hu>
  • To: rmkiusers-all AT wigner.hu, fizinfo AT lists.kfki.hu
  • Subject: [Fizinfo] [Rmkiusers] Wigner FK RMI Elméleti Osztály Szemináriuma
  • Date: Mon, 9 Feb 2026 08:47:25 +0100
  • Authentication-results: smtp012.wigner.hu (amavis); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.hu

Wigner FK RMI Elméleti Osztály Szemináriuma
Tisztelettel meghívjuk


Shalabh Gautam
(Group of Analysis and Geometry, Beijing Institute of Mathematical
Sciences and Applications)


"3D Summation-By-Parts Schemes on Hyperboloidal Slices”


címmel tartandó szemináriumára.


Kivonat:



This talk addresses the numerical part of attaining a stable evolution of the
hyperboloidal initial value problems for long times. I will describe a fully
3-dimensional Summation-By-Parts (SBP) scheme for a class of linear wave
equations on hyperboloidal slices, on a Minkowski background, all derived in
spherical polar coordinates. The major strength of this scheme is that it is
provably stable, and allows having grid points at the origin and on the
z-axis, despite coordinate singularities, and at infinity, despite a formal
singularity arising due to compactification. Reducing it to a Cauchy problem
on the standard Cauchy slices, or on finite spacelike slices with an outer
boundary, is a straightforward exercise. Its generalizations to general,
including dynamical, backgrounds is also proposed, which could also be used
to evolve a general matter distribution, like fluids, etc. Promising results
are obtained, giving hope for application to the nonlinear systems, like the
Einstein Field Equations.


Helye: Wigner FK RMI III. ép. Tanácsterem
Ideje: 2026 február 13. péntek d.u. 2 óra

Szívesen látunk minden érdeklődőt.


Somogyi Gábor


Archive powered by MHonArc 2.6.19+.

Top of Page