fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
[Fizinfo] Szilárd-kollokvium (kedd 14:30), Kueng a gépi tanulásról kvantumrendszerekben
Chronological Thread
- From: Dr. Dóra Balázs <dora.balazs AT ttk.bme.hu>
- To: "fizinfo AT lists.kfki.hu" <fizinfo AT lists.kfki.hu>
- Subject: [Fizinfo] Szilárd-kollokvium (kedd 14:30), Kueng a gépi tanulásról kvantumrendszerekben
- Date: Thu, 20 Nov 2025 15:38:25 +0000
- Accept-language: en-US
- Arc-authentication-results: i=1; mx.microsoft.com 1; spf=pass smtp.mailfrom=ttk.bme.hu; dmarc=pass action=none header.from=ttk.bme.hu; dkim=pass header.d=ttk.bme.hu; arc=none
- Arc-message-signature: i=1; a=rsa-sha256; c=relaxed/relaxed; d=microsoft.com; s=arcselector10001; h=From:Date:Subject:Message-ID:Content-Type:MIME-Version:X-MS-Exchange-AntiSpam-MessageData-ChunkCount:X-MS-Exchange-AntiSpam-MessageData-0:X-MS-Exchange-AntiSpam-MessageData-1; bh=OA5Rt+1Ggz1F/eFpYN6L34DNNO3ZUCqSEAfY/aQXsOk=; b=i635rkT+tf4XhppGw7nyb9gbA4C3f4dz1IXYyq3FffoTqvW3WDcE9P57q5L1Xw5J8/eqTmXJNY1aKcQcKY5/2VameEEjRat2CQDcSMlHQhIIBBM+ycmriERpQWRtpIHu9GUl+6mieMm5RnVxrPo+PLSQbmChABiC9/rgA0RifaRgD6VUylTu0FN93p1QoFT7/hgK783+qBKK6RPJejnatXNt7/7u8UGANwIA/rO4oaFmaRSKxhxtPLKegEmHFTF/CmkHquteITPHuoei72IDEnZpEOUkPdxW6oqOUAjdm2uGZqfxekkwzZWOxbTj7ePdWP+oMzVdv/2rfxqLY3thIQ==
- Arc-seal: i=1; a=rsa-sha256; s=arcselector10001; d=microsoft.com; cv=none; b=Cvqfat7QwhvhJ9lUmlI5V4ryuDKY0m9SMHb0IksQgc4zWDEQWA4Q6sWhn9bwh/tjxxKXboizPeApjZr2JYnzvf0q/upritEn1Td8EeOYLL2huy3u1JvaCajHm2wA2OZoEzVRC0l7AsmfM15kkZAWFHOQg32W5oQptOf87Gn0zxlwbvdziTMuZLNABmfgjTN7t9urGVgeUTqkFuL5w7rSuJGPgjbMo7obVNxDqcU3Asa1icaDW2fXQV1AU8M0J3KtSYmzcQmKRpw/BtT8W8WTTf1fCQzbHPALV8Ib+s9GVFqGMlZ79hmOHtVtHaRs00zxTcF/yztFAFEkyU3b/b1F7A==
- Authentication-results: smtp012.wigner.hu (amavis); dkim=pass (2048-bit key) header.d=ttk.bme.hu
- Authentication-results: dkim=none (message not signed) header.d=none;dmarc=none action=none header.from=ttk.bme.hu;
MEGHÍVÓ
a Szilárd Leó-Kollokvium előadására:
Richard Kueng
(Johannes Kepler University)
“Learning to predict ground state properties of gapped Hamiltonians"
Kivonat: Classical machine learning (ML) provides a potentially powerful
approach to solving challenging quantum many-body problems in physics and
chemistry. However, the advantages of ML over traditional methods have not
been firmly established. In this work, we prove that classical ML algorithms
can efficiently predict ground-state properties of gapped Hamiltonians after
learning from other Hamiltonians in the same quantum phase of matter. By
contrast, under a widely accepted conjecture, classical algorithms that do
not learn from data cannot achieve the same guarantee. Our proof technique
combines signal processing with quantum many-body physics and also builds
upon the recently developed framework of classical shadows. I will try to
convey the relevant background and main ideas and also present numerical
experiments that address the anti-ferromagnetic Heisenberg model and Rydberg
atom systems.
Helye: BME Fizikai Intézet, Fizika Tanszék
Budafoki út 8. F-épület, 2. emelet, 13-as terem
Ideje: 2025. november 25. (kedd), 14:30.
Kapunyitás 14:14-től.
Program: http://physics.bme.hu/kollokvium
Minden érdeklődőt örömmel várunk!
Dóra Balázs és Zaránd Gergely
- [Fizinfo] Szilárd-kollokvium (kedd 14:30), Kueng a gépi tanulásról kvantumrendszerekben, Dr . Dóra Balázs, 11/20/2025
Archive powered by MHonArc 2.6.19+.