fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
- From: Horváth Zsolt Endre <horvath.zsolt.endre AT ek.hun-ren.hu>
- To: energiausers AT lists.energia.mta.hu, wignerusers AT wigner.mta.hu, fizinfo AT lists.kfki.hu
- Subject: [Fizinfo] EK MFA szeminárium, Michelle Cirunay, 2025 március 5, szerda 11.00
- Date: Thu, 27 Feb 2025 08:44:39 +0100
- Authentication-results: smtp012.wigner.hu (amavis); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=ek.hun-ren.hu
Kedves Kollégák!
2025 március 5-én, szerdán 11 órakor kerül sor a KFKI 26. épület, 1. emeleti tanácsteremben
Michelle Cirunay (EK MFA Komplex Rendszerek Labor)
"Modelling connectome structure using avalanched-based models with Hebbian learning on hierarchical modular networks"
című előadására.
Abstract:
Brain studies mainly focus on the anatomical wiring of the brain and its topological qualities to ascertain the exact relationship between anatomical structure and function. In this study, we examine the weighted degree distributions of various large connectomes: fruit fly, mouse retina, and human connectomes KKI-113 and KKI-18. We find that the behavior of the node strength (weighted degree) distribution varies according to the scale under consideration. The distributions exhibit power-law behavior on a global scale, with an approximately universal exponent near 3. However, this tendency deviates at the local level as the node strength distributions of the KKI-18 follow a stretched exponential, and the fly and mouse retina follow the log-normal distribution, respectively, which are suggestive of underlying random multiplicative processes which support non-locality of learning in a brain near the critical state. We also attempt to provide analytical and numerical explanation on the observed scale-free behavior. Furthermore, to gain insight on the dynamics that led to this observed scale-free behavior of the global weight distributions of connectomes, we impose an avalanche-based model with Hebbian learning over Hierarchical modular network (HMN) architecture to simulate the dynamic process of reinforcement [weakening] of preferred [unused] pathways. HMNs recover key features of neuronal activity, making them good representative baseline structures for modeling cortical activity. Via targeted link creation and/or reinforcement for dynamically activated sites in a sandpile-like avalanche, and a random weakening and/or pruning during stasis times, we recover edge weight distributions that closely resemble the empirical connectome edge weight distributions in various neural systems.
Minden érdeklődőt szívesen látunk!
Horváth Zsolt Endre
Szeminárium koordinátor
--
Dr. Zsolt E. HORVÁTH
Institute for Technical Physics and Materials Science,
Centre for Energy Research
(EK MFA)
Konkoly Thege Rd. 29-33, 1121 Budapest,
Mail: P.O.Box 49, H-1525 Budapest, Hungary
Phone: +36-1-392-2680, Fax: +36-1-392-2226
e-mail:horvath.zsolt.endre AT ek-cer.hu
- [Fizinfo] EK MFA szeminárium, Michelle Cirunay, 2025 március 5, szerda 11.00, Horváth Zsolt Endre, 02/27/2025
Archive powered by MHonArc 2.6.19+.