Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] BME Elm. Fiz. Szeminárium, ápr. 9, Szász-Schagrin Dávid

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] BME Elm. Fiz. Szeminárium, ápr. 9, Szász-Schagrin Dávid


Chronological Thread 
  • From: Janos Asboth <asboth AT phy.bme.hu>
  • To: fizinfo AT lists.kfki.hu, elmfiz.oktatok-kutatok AT lists.bme.hu, elmfiz.hallgatok AT lists.bme.hu
  • Subject: [Fizinfo] BME Elm. Fiz. Szeminárium, ápr. 9, Szász-Schagrin Dávid
  • Date: Wed, 7 Apr 2021 09:19:48 +0200

Meghívó

BME Elméleti Fizika Szeminárium,

mércius 26. péntek 10h15,
online a Microsoft Teams-ben
<https://teams.microsoft.com/l/meetup-join/19%3a35c712c192104aa998ed6bab3f0cbc07%40thread.tacv2/1617779846123?context=%7b%22Tid%22%3a%226a3548ab-7570-4271-91a8-58da00697029%22%2c%22Oid%22%3a%22c7eaf7d2-684b-4597-b217-6a9121400219%22%7d>
Szász-Schagrin Dávid (BME Elm. Fiz. tanszék, PhD hallgató):
Weak integrability breaking and level spacing distribution

Recently it was suggested that certain perturbations of integrable spin
chains lead to a weak breaking of integrability in the sense that
integrability is preserved at the first order of the coupling. Here we
examine this claim using level spacing distribution. We find that the
volume dependent cross-over between integrable and chaotic statistics is
markedly different between weak and strong breaking of integrability,
supporting the claim that perturbations by generalised currents only break
integrability at higher order. In addition, for the massless case we find
that the critical coupling as a function of the volume L scales with a
1/L^2 law for weak breaking as opposed to the previously found 1/L^3 law
for the strong case.

Minden érdeklődőt szeretettel várunk.

Asbóth János
szemináriumi koordinátor


  • [Fizinfo] BME Elm. Fiz. Szeminárium, ápr. 9, Szász-Schagrin Dávid, Janos Asboth, 04/07/2021

Archive powered by MHonArc 2.6.19+.

Top of Page