fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
- From: Janos Asboth <asboth AT phy.bme.hu>
- To: fizinfo AT lists.kfki.hu, elmfiz.oktatok-kutatok AT lists.bme.hu, elmfiz.hallgatok AT lists.bme.hu
- Subject: [Fizinfo] BME Elm. Fiz. Szeminárium, feb. 5, Hódsági Kristóf
- Date: Wed, 3 Feb 2021 18:19:30 +0100
Meghívó
BME Elméleti Fizika Szeminárium,
február 5. péntek 10h15,
online a Microsoft Teams-ben
<https://teams.microsoft.com/l/meetup-join/19%3a35c712c192104aa998ed6bab3f0cbc07%40thread.tacv2/1612372595059?context=%7b%22Tid%22%3a%226a3548ab-7570-4271-91a8-58da00697029%22%2c%22Oid%22%3a%22c7eaf7d2-684b-4597-b217-6a9121400219%22%7d>
Hódsági Kristóf (BME Elm. Fiz. tanszék):
Kibble-Zurek mechanism in the Ising Field Theory
How can we describe the formation of order in critical systems? If we tune
the control parameters such that the system crosses the critical point, the
answer is given by the Kibble-Zurek mechanism (KZM) [1] that predicts
universal dependence of observables on the rate of change of the control
parameter. In recent years, the focus on quantum critical points [2]
demonstrated the validity of the KZM in an extended set of systems. Our
work [3] explores the KZM in the Ising Field Theory, where the quantum
critical point can be crossed in different directions in the
two-dimensional coupling space leading to different scaling laws. Using the
Truncated Conformal Space Approach, we investigate the microscopic details
of the KZM in terms of instantaneous eigenstates in a genuinely interacting
field theory. For different protocols, we demonstrate dynamical scaling in
the non-adiabatic time window and provide analytic and numerical evidence
for specific scaling properties of various quantities. In particular, we
argue that the higher cumulants of the excess heat exhibit universal
scaling in generic interacting models for a slow enough ramp.
[1] T. W. B. Kibble, Topology of cosmic domains and strings, J. Phys. A:
Math. Gen. 9, 1387 (1976); W. H. Zurek, Cosmological experiments in
superfluid helium?, Nature 317, 505 (1985).
[2] J. Dziarmaga, Dynamics of a quantum phase transition and relaxation to
a steady state, Adv. Phys. 59, 1063 (2010).
[3] K. Hódsági, M. Kormos, Kibble–Zurek mechanism in the Ising Field
Theory, SciPost Phys. 9, 055 (2020).
Minden érdeklődőt szeretettel várunk.
Asbóth János
szemináriumi koordinátor
- [Fizinfo] BME Elm. Fiz. Szeminárium, feb. 5, Hódsági Kristóf, Janos Asboth, 02/03/2021
Archive powered by MHonArc 2.6.19+.