Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] Wigner FK RMI Elméleti Osztály Szemináriuma

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] Wigner FK RMI Elméleti Osztály Szemináriuma


Chronological Thread 
  • From: Balog Janos <balog.janos AT wigner.hu>
  • To: fizinfo AT lists.kfki.hu, rmkiusers AT lists.kfki.hu
  • Subject: [Fizinfo] Wigner FK RMI Elméleti Osztály Szemináriuma
  • Date: Tue, 26 Jan 2021 10:04:54 +0100
  • Authentication-results: smtp2.kfki.hu (amavisd-new); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.hu

Wigner FK RMI Elméleti Osztály Szemináriuma
Tisztelettel meghívjuk


Fehér László
(Wigner RMI és SZTE)


"On the bi-Hamiltonian structure of spin
Ruijsenaars-Schneider-Sutherland models"


címmel tartandó online szemináriumára.

Az előadás linkje:

Topic: Wigner ELMFO Seminar
Time: Jan 29, 2021 14:00 (room open from 13:30) Budapest

Direct link:
https://cern.zoom.us/j/96047189540?pwd=YllOMG44eU0yQlJMTG5IMGh0SHpCZz09

Meeting ID: 960 4718 9540
Passcode: 905691



Kivonat:

Many classical integrable systems admit a bi-Hamiltonian formulation, which means
that the equations of motion can be encoded using two different Poisson brackets and
corresponding Hamiltonians. After recalling this notion, we present a bi-Hamiltonian
structure for the finite dimensional dynamical systems derived by Braden and Hone in
1996 from the solitons of affine Toda field theory. These evolution equations have been
related to the so called spin Ruijsenaars-Schneider model as well as to the hyperbolic spin Sutherland model that arises by reduction of free geodesic motion on a symmetric space.The integrable models just mentioned describe interacting point `particles'
moving along a line and include also `spin' degrees of freedom akin to time dependent
coupling parameters. The second half of the lecture is devoted to analogous models of
particles moving on a circle. In this case a bi-Hamiltonian structure will be derived via
reducing a bi-Hamiltonian structure associated with free geodesic motion on the unitary
group U(n). The talk is based on the papers arXiv:1901.03558 and arXiv:1908.02467.


Helye: online
Ideje: 2021 január 29 péntek d.u. 14:00



Szívesen látunk minden érdeklődőt.


Balog János






Archive powered by MHonArc 2.6.19+.

Top of Page