fizinfo AT lists.kfki.hu
Subject: ELFT HÍRADÓ
List archive
- From: Janos Asboth <asboth.janos AT wigner.mta.hu>
- To: fizinfo AT lists.kfki.hu
- Subject: [Fizinfo] BME Elm. Fiz. Szeminárium, dec 20, Sárosi Gábor
- Date: Wed, 18 Dec 2019 15:59:01 +0100
- Authentication-results: smtp2.kfki.hu (amavisd-new); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.mta.hu
Meghívó
BME Elméleti Fizika Szeminárium,
december 20. péntek 9h00 (szokásosnál korábbi időpont),
1111 Budapest, Budafoki út 8., BME F III. magasföldszint 01.,
Elméleti Fizika Tanszék szemináriumi szoba
Sárosi Gábor (CERN):
Chaos in the butterfly cone
A simple probe of chaos and operator growth in many-body quantum systems is
the out of time ordered four point function. In a large class of local
systems, the effects of chaos in this correlator build up exponentially
fast inside the so called butterfly cone. It has been previously observed
that the growth of these effects is organized along rays and can be
characterized by a velocity dependent Lyapunov exponent. We prove a bound
on this exponent that generalizes the chaos bound of Maldacena, Shenker and
Stanford. We observe that many systems saturate this bound in a finite size
region near the edge of the butterfly cone and the size of this region
grows with the coupling. We discuss the connection to conformal Regge
theory, where the velocity dependent exponent controls the four point
function in an interpolating regime between the Regge and the light cone
limit, and relate the aforementioned saturation of our bound to an exchange
of dominance between the stress tensor and the pomeron.
Minden érdeklődőt szeretettel várunk.
Asbóth János
szemináriumi koordinátor
- [Fizinfo] BME Elm. Fiz. Szeminárium, dec 20, Sárosi Gábor, Janos Asboth, 12/18/2019
Archive powered by MHonArc 2.6.19+.