Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] BME Elm. Fiz. Szeminárium, dec 6, Veszeli Máté

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] BME Elm. Fiz. Szeminárium, dec 6, Veszeli Máté


Chronological Thread 
  • From: Janos Asboth <asboth.janos AT wigner.mta.hu>
  • To: fizinfo AT lists.kfki.hu, Martini Erzsébet, Liza <martini.erzsebet AT mail.bme.hu>
  • Cc: Máté Tibor Veszeli <mate.veszeli AT gmail.com>
  • Subject: [Fizinfo] BME Elm. Fiz. Szeminárium, dec 6, Veszeli Máté
  • Date: Wed, 4 Dec 2019 14:04:39 +0100
  • Authentication-results: smtp0.kfki.hu (amavisd-new); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.mta.hu

Meghívó

BME Elméleti Fizika Szeminárium,

december 6. péntek 10h15,

1111 Budapest, Budafoki út 8., BME F III. magasföldszint 01.,
Elméleti Fizika Tanszék szemináriumi szoba

Veszeli Máté Tibor (ELTE TTK Komplex Rendszerek Fizikája Tanszék):

Simulated Adiabatic Quantum Annealing

Complexity theory categorizes mathematical problems into classes, regarding
the rate of growth of the resource requirements as the input of the problem
increases. The most interesting class is "NP-hard": solving any problem in
this class automatically provides a solution (with polynomial overhead
cost) to any problem in class NP, i.e., any problem with solution
verifiable in polynomial time. It is conjectured that NP-hard problems are
really hard, i.e., they have no polynomial-time solutions. An example is
the travelling salesman problem, which is practically impossible to solve
exactly for large problem sizes, but several algorithms (e.g. simulated
annealing) and machines (e.g. coherent Ising machine) exist which can give
an acceptably good solution.
One way to attack the traveling salesman problem is using an adiabatic
quantum computer - a device that can give us the ground state of a complex
Hamiltonian through adiabatic time evolution. Unfortunately to operate an
adiabatic quantum computers one has to overcome the same challenge as with
other quantum devices: it is difficult to separate them from their
environment. During my talk I will present a numerical method which
simulates the adiabatic quantum computer on a classical computer.

Minden érdeklődőt szeretettel várunk.

Asbóth János
szemináriumi koordinátor


  • [Fizinfo] BME Elm. Fiz. Szeminárium, dec 6, Veszeli Máté, Janos Asboth, 12/04/2019

Archive powered by MHonArc 2.6.19+.

Top of Page