Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma


Chronological Thread 
  • From: Balog Janos <balog.janos AT wigner.mta.hu>
  • To: fizinfo AT lists.kfki.hu, rmkiusers AT lists.kfki.hu
  • Subject: [Fizinfo] MTA Wigner FK RMI Elméleti Osztály Szemináriuma
  • Date: Tue, 14 May 2019 18:27:59 +0800
  • Authentication-results: smtp0.kfki.hu (amavisd-new); dkim=pass (1024-bit key) reason="pass (just generated, assumed good)" header.d=wigner.mta.hu

MTA Wigner FK RMI Elméleti Osztály Szemináriuma
Tisztelettel meghívjuk


Gombor Tamás
(Wigner RMI)


"On classification of rational K-matrices"


címmel tartandó szemináriumára.

Kivonat:

The K-matrices are solutions of the boundary Yang-Baxter equation. Their main application area is open spin chains and they also describe boundary scatterings of 1+1 dimensional integrable field theories. Based on the simplest known K-matrices, it was conjectured that the boundary breaks the bulk symmetry G to H such that G/H is a symmetric space, which means that there exists a Lie-group involution for which the subgroup H is invariant.

Some K-matrices belong to representation of the so called twisted Yangians which are coidal subalgebras of Yangians. There are one-to-one correspondence between twisted Yangians and symmetric spaces which also shows the connection between the solutions of the boundary Yang-Baxter equation and symmetric spaces. In this talk I prove that if a K-matrix is a solution of the boundary Yang-Baxter equation then the residual symmetry always defines a symmetric space.


Helye: MTA Wigner FK RMI III.ép. Tanácsterem
Ideje: 2019 május 17 péntek du. 14:00



Szívesen látunk minden érdeklődőt.


Balog János





Archive powered by MHonArc 2.6.19+.

Top of Page