Skip to Content.
Sympa Menu

fizinfo - [Fizinfo] SZTE TTIK Fizikai Intézet szeminárium, 2019. 03. 21.

fizinfo AT lists.kfki.hu

Subject: ELFT HÍRADÓ

List archive

[Fizinfo] SZTE TTIK Fizikai Intézet szeminárium, 2019. 03. 21.


Chronological Thread 
  • From: mcsete AT physx.u-szeged.hu
  • To: fizinfo AT lists.kfki.hu
  • Subject: [Fizinfo] SZTE TTIK Fizikai Intézet szeminárium, 2019. 03. 21.
  • Date: Wed, 20 Mar 2019 11:39:32 +0100


Meghívó

SZTE TTIK Fizikai Intézet Szemináriuma

Előadó: Professor Markus W. Sigrist
ETH Zürich, Institute for Quantum Electronics, CH-8093 Zürich, Switzerland


Cím: Infrared laser spectroscopy: from trace detection to glucose sensing
Időpont: 2019. 03. 21. (csütörtök), 14-15 h
Helyszín: SZTE TTIK, Fröhlich Pál tanterem,
Szeged, Tisza Lajos körút. 84-86.

Absztrakt:
Chemical sensing and analyses of samples by laser spectroscopic methods are attractive owing to several advantages such as high sensitivity and specificity, large dynamic range, multi-component capability, and lack of pretreatment or preconcentration procedures.
The preferred wavelength range comprises the fundamental molecular absorption range in the mid-infrared between 3 and 15 ?m. The availability of broadly tunable mid-infrared sources like external cavity quantum cascade lasers (EC-QCLs), interband cascade lasers (ICLs), difference frequency generation (DFG), optical parametric oscillators (OPOs), recent developments of diode-pumped lead salt semiconductor lasers, of supercontinuum sources or of frequency combs have eased the implementation of laser-based sensing devices.
Sensitive techniques for molecular absorption measurements include multipass absorption, various configurations of cavity-enhanced techniques such as cavity ringdown (CRD), or of photoacoustic spectroscopy (PAS) including quartz-enhanced (QEPAS) or cantilever-enhanced (CEPAS) techniques. The application requirements finally determine the optimum selection of laser source and detection scheme.
After a brief introduction on some key issues, various experimental setups and the performance of selected systems for chemical sensing of selected atmospheric species will be discussed. Applications include an early example of continuous vehicle emission measurements with a mobile CO_2-laser PAS system [1], measurements on short-lived species like nitrous acid (HONO) with a QCL-based QEPAS system [2], isotope measurements in human breath [3], a true analysis of gas mixtures with a widely tunable DFG system in a medical application [4], as well as the fast analysis of C_1-C_4 alkanes at sub-ppm concentrations with a new type of mid-infrared diode-pumped piezoelectrically tuned lead salt VECSEL [5].
Finally, a new approach for the non-invasive in vivo detection of glucose in the interstitial fluid in the epidermal layer of human skin is presented. It is based on QCL absorption of glucose and photoacoustic detection with a special PA cell in direct contact with skin [6].

1. D. Marinov and M.W. Sigrist: Photochem. and Photobiol. Sciences 2, 774-778 (2003)
2. H. Yi, R. Maamary, X. Gao, M.W. Sigrist, E. Fertein, and W. Chen: Appl. Phys. Lett. 106, 101109 (2015)
3. R. Bartlome and M.W. Sigrist: Opt. Letters 34, 866-868 (2009)
4. M. Gianella and M.W. Sigrist: Appl. Phys. B 109, 485-496 (2012)
5. J.M. Rey, M. Fill, F. Felder and M.W. Sigrist: Appl. Phys. B 117, 935-939 (2014)
6. J. Kottmann, J. M. Rey and M. W. Sigrist: Sensors 16, 1663 (2016)


Minden érdeklődőt szeretettel várunk.

Dr. Csete Mária
szeminárium-koordinátor

----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.


  • [Fizinfo] SZTE TTIK Fizikai Intézet szeminárium, 2019. 03. 21., mcsete, 03/20/2019

Archive powered by MHonArc 2.6.19+.

Top of Page